237. Application of the Hammett Equation to Cyclopropanes.

By Marvin Charton.

Abstract

The Hammett equation is shown to be applicable to substituents directly attached to the cyclopropane ring. Data for monosubstituted and 1,1 -disubstituted cyclopropanes are apparently best correlated with the σ_{p} constants, indicating resonance interaction between cyclopropane ring and substituent, comparable to that found in o - and p-substituted benzene, cisand trans-1,2-vinylene, and ethynylene derivatives. Data for trans-1,2-disubstituted cyclopropanes are apparently best correlated with the σ_{m} constants. A possible rationalisation of these results is proposed. Transmission of substituent effects by the cyclopropane ring is discussed.

Many authors have reported evidence for double-bond character in cyclopropane and its derivatives (a phenomenon not found in other cycloalkanes). The relative ease with which cyclopropanes undergo addition of halogen or hydrogen halide, as compared to other cycloalkanes, suggests some similarity to carbon-carbon double bonds. Of particular interest is the possibility that groups may conjugate with the cyclopropane ring. The possibility of electron delocalisation in the cyclopropane ring has been predicted on theoretical grounds. ${ }^{1,2}$ The ultraviolet spectra of cyclopropanes bonded to carboncarbon double bonds, ${ }^{3}$ to carbonyl groups, ${ }^{4,5}$ and to aryl ${ }^{6}$ and heteroaryl groups ${ }^{7}$ show shifts in maxima which are indicative of delocalisation. Studies of infrared spectra, ${ }^{8}$ dipole moments, ${ }^{4,5,9-11}$ and molar refractivities ${ }^{12}$ provide further evidence of significant amounts of conjugation.

Additional evidence for conjugation (or at least of a hybridisation state other than $s p^{3}$ for the carbon atoms of the ring) has resulted from studies of molecular dimensions. Petersen, in an X-ray crystallographic study of Feist's acid (trans-3-methylenecyclo-propane-1,2-dicarboxylic acid), has given a value for the length of the ring-carbon-carbonyl-carbon bond of $1.48 \AA .^{13}$ An X-ray crystallographic study of cyclopropanecarboxylic acid hydrazide gave a value for the ring-carbon-carbonyl-carbon bond of $1.48 \AA .^{14}$ Friend and Dailey, ${ }^{15}$ in an electron-diffraction study of cyclopropyl cyanide, gave a value for the ring-carbon-cyanide-carbon bond of $1-4679 \AA$. The same authors also examined cyclopropyl chloride and found a carbon-chlorine bond length of $1.7780 \AA$. All these values are significantly lower than those obtained when the same substituents were attached to $s p^{3}$ carbon.

Chemical evidence for conjugation with the carbon-carbon double bond ${ }^{12}$ and with the carbonyl group ${ }^{16}$ has been reportd. In general, the evidence indicates that the

[^0]degree of conjugation of the cyclopropane ring with some π-bonded group such as vinyl, aryl, or carbonyl is less than that of two such groups bonded to each other. Eastman and his co-workers ${ }^{17}$ have suggested, on the basis of the ultraviolet spectra of compounds (I), (II), (III), (IVa), and (IVb), and the $\mathrm{p} K_{\mathrm{a}}$ value of (V), that, while a cyclopropane ring may extend a conjugated system, it cannot function as a transmitter of conjugation from one π-bonded group to another. It was pointed out by Mohrbacher and Cromwell ${ }^{8}$ that, at least in (I), (II), (III), and (V), steric factors make it impossible for the cyclopropane ring to interact with the carbonyl group. They present evidence from the infrared and ultraviolet spectra for interactions between the phenyl group and the carbonyl group in trans-2-phenylcyclopropylcarbonyl compounds. It has recently been noted that interactions between the cyclopropyl group and carbonyl groups are most effective when the cyclopropane ring is parallel to the p orbitals of the carbonyl groups. ${ }^{18}$ Such a situation obviously cannot be realised in (I), (II), (III), and (V). Examination of the Stuart-Briegleb models of (IVa) and (IVb) shows that these substances cannot attain the necessary conformation, owing to steric hindrance. It would seem, therefore, that

(I)

(II)

(III)

(IVa: $\mathrm{X}=\mathrm{O}$)
(IVb: $X=\mathrm{NH}_{2}$)

(V)
examination of compounds (I)-(V) cannot show whether or not the cyclopropane ring can function as a transmitter of conjugation from one group to another. In addition to Mohrbacher and Cromwell, several other authors have reported conjugation of groups through the cyclopropane ring. ${ }^{19}$

The Hammett equation,,20,21 which may be written in the general form,

$$
\begin{equation*}
Q_{\mathrm{x}}=\rho \sigma_{\mathrm{x}}+Q_{\mathrm{H}}, \tag{1}
\end{equation*}
$$

where Q is the quantity correlated, ρ the reaction parameter, σ the substituent parameter, and X and H denote the substituted and unsubstituted members of the series, respectively, was first applied to the study of transmission of conjugation through the cyclopropane ring by Trachtenberg and Odian. ${ }^{22}$ These authors determined ρ for the ionisation constants of trans-2-(4-substituted phenyl)cyclopropanecarboxylic acids. Jaffé ${ }^{21}$ proposed that the variation of p with the sidechain Z in compounds of type (VI), where X is the substituent and Y the reaction site, is indicative of the extent to which Z transmits the substituent effect. Fuchs and Bloomfield ${ }^{23,24}$ determined ρ for the alkaline hydrolysis of ethyl cis- and trans-2-(3- or 4-substituted phenyl)cyclopropanecarboxylates and of ethyl cis- and trans-cinnamates. These results, together with those of Fuchs et al., ${ }^{25}$ are given in Table 1.

[^1]The ρ values for alkaline hydrolysis seem to indicate significantly greater transmission through the cyclopropyl group relative to the $-\mathrm{CH}_{2} \cdot \mathrm{CH}_{2}-$ groups. ${ }^{24}$ The p-values for the ionisation of the acids have been interpreted by Trachtenberg and Odian to indicate

Table 1.

that, as the cyclopropane ring is no more effective in the transmission of substituent effects than is the $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ group, the cyclopropane ring cannot be linking the carboxyl group and the benzene ring by conjugation. The question now arises of whether or not the transmission of the substituent effect, as measured by the ρ-value, will be proportional to the degree of conjugation of the benzene ring and the carbonyl group through the cyclopropane ring. It has been shown that ρ-values for reaction series in which resonance does take place can be calculated from an electrostatic equation. ${ }^{26}$ These calculations have been made for the ionisation of carboxylic acids and the alkaline hydrolysis of esters. The results for the ionisation of carboxylic acids show that the p-value is dependent on the conformation of the acid. It is entirely possible for the p-value of a series in which resonance occurs to be smaller than the ρ-value for a series in which no resonance is possible. In view of the uncertainty in interpreting these results, it seemed worthwhile to attempt to study conjugation, both with and through the cyclopropane ring, by another approach.

The Hammett equation has been used to correlate data for vinylene reaction series ${ }^{27,28}$ and acetylene reaction series ${ }^{29}$ by means of the σ_{p} constants, and for vinylidene reaction series ${ }^{30}$ by means of the σ_{m} constants.

Taft ${ }^{31}$ has suggested that σ_{p} constants are given by eqn. (2) and σ_{m} constants by eqn. (3).

$$
\begin{align*}
\sigma_{\mathrm{p}} & =\sigma_{\mathrm{I}}+\sigma_{\mathrm{R}} \tag{2}\\
\sigma_{\mathrm{m}} & =\sigma_{\mathrm{I}}+1 / 3 \sigma_{\mathrm{R}} \tag{3}
\end{align*}
$$

Thus, by means of a correlation of data for cyclopropane reaction series (in which the substituent is directly attached to the cyclopropane ring) with the σ_{p}, σ_{m}, and σ_{I} constants, it should be possible to determine the extent of conjugation with the ring. Another approach to this problem would be the use of the four-parameter equation:

$$
\begin{equation*}
Q_{\mathrm{X}}=\rho_{\mathrm{I}} \sigma_{\mathrm{I}}+\rho_{\mathrm{R}} \sigma_{\mathrm{R}}+Q_{\mathrm{II}}, \tag{4}
\end{equation*}
$$

In view of the limited data available, the use of eqn. (4) was considered premature, although it would otherwise have been the preferred method of attack on this problem.

[^2]A search of the literature provided data for five reaction series: $\mathrm{p} K_{\mathrm{a}}$ values for trans-2substituted cyclopropanecarboxylic acids in water at $25^{\circ} ; \mathrm{p} K_{\mathrm{a}}$ values for trans-2substituted 3,3-dimethylcyclopropanecarboxylic acids in 80% Methyl Cellosolve at $\mathbf{2 5}{ }^{\circ}$; $\mathrm{p} K_{\mathrm{a}}$ values for 1-substituted cyclopropanecarboxylic acids in water at 25°; dipole moments of substituted cyclopropanes; and near-infrared absorption maxima of substituted cyclopropanes. The data are given in Table 2. For purposes of comparison, literature values

Table 2.
Data for cyclopropane reaction series.
(1) $\mathrm{p} K_{\mathrm{a}}$ values for trans-2-substituted cyclopropanecarboxylic acids in water at 25°.

X	Ph	Cyclohexyl	$\mathrm{CO}_{2} \mathrm{H}$	CO_{2}^{-}	H
$\mathrm{p} K_{\mathrm{a}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$\mathbf{4 \cdot 5 0}$	$\mathbf{4 \cdot 7 9}{ }^{*}$	$\mathbf{3 \cdot 9 5} \dagger$	$4 \cdot 83 \ddagger$	$4 \cdot 83$
Ref. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	22	32	33	33	33

(2) pK_{a} values for trans-2-substituted 3,3-dimethylcyclopropanecarboxylic acids in 80% Methyl Cellosolve at $\mathbf{2 5}$.

X	Bu	Ph	$\mathrm{OPr}^{\mathrm{i}}$	CO_{2}^{-}	$\mathrm{CO}_{2} \mathrm{H}$
$\mathrm{p} K_{\mathrm{n}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	$\mathbf{7 \cdot 9 0}$	$7 \cdot 42$	$7 \cdot 55$	$7 \cdot 77 \S \ddagger$	$6 \cdot 31$
Ref. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	32	32	32	33	33

(3) $\mathrm{p} K_{\mathrm{a}}$ values for 1 -substituted cyclopropanecarboxylic acids in water at 25°.

X	H	Cl	$\mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CO}_{2}{ }^{-}$
$\mathrm{p} K_{\mathrm{n}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$4 \cdot 83$	$\mathbf{3 \cdot 2 6}$	$2 \cdot 12 \dagger$	$5 \cdot 13 \ddagger$
Ref. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$.	$\mathbf{3 3}$	$\mathbf{3 4}$	$\mathbf{3 3}$	33

(4) Dipole moments of substituted cyclopropanes.

X	Ph	Ac	H	Et	Cl	CN	Pr	Br
$\mu(\mathrm{D})$	$\ldots \ldots \ldots \ldots$	$0 \cdot 49$	$2 \cdot 84$	0	$0 \cdot 18$	$1 \cdot 76$	$3 \cdot 75$	$0 \cdot 75$
Ref. $\ldots \ldots \ldots \ldots \ldots$.	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{3 5}$	$\mathbf{3 6}$	$\mathbf{9 , 1 0 , 1 1}$	$\mathbf{9}$	$\mathbf{3 7}$	10

(5) Near-infrared spectra: wavelengths of cyclopropane absorption (ref. 38).

X	CN	$\mathrm{CO}_{2} \mathrm{H}$	$\mathrm{CO}_{2} \mathrm{Me}$	Ac	Ph	Et	Bu
λ (microns)	$\ldots . . .$.	$\mathbf{1 . 6 2 4}$	$\mathbf{1 . 6 2 6}$	$\mathbf{1 . 6 2 7}$	$\mathbf{1 . 6 2 8}$	$\mathbf{1 . 6 3 5}$	$\mathbf{1 . 6 3 9}$

* Estimated from value in $\mathbf{8 0} \%$ Methyl Cellosolve at 25°. † Includes a statistical factor of $\mathbf{1} / \mathbf{2}$.
\ddagger Includes a statistical factor of 2 . § Estimated from value in water at 25°. Estimated values were calculated from the linear relation between $\mathrm{p} K_{\mathrm{a}}$'s in the two solvents, obtained by least mean squares.
of $\mathrm{p} K_{\mathrm{a}}$ for trans-2-substituted cyclohexanecarboxylic acids in water at 25° and of the dipole moment for substituted cyclobutanes, cyclopentanes, and cyclohexanes were also correlated with the Hammett equation. The data for these series are given in Table 3.

Results

Correlations.-The correlations were made by the method of Jaffé. ${ }^{21}$ Each series was correlated separately with $\sigma_{\mathrm{m}}, \sigma_{\mathrm{p}}$, and σ_{I} constants. The σ_{m} and σ_{p} constants used were taken, where possible, from the compilation of McDaniel and Brown. ${ }^{50}$ The σ_{I} values used were those of Taft and Lewis, ${ }^{31}$ where possible. Values of $\sigma_{\mathrm{m}}, \sigma_{\mathrm{p}}$, and σ_{I}, taken from other sources, are given in Table 4. The results of the correlations for the cyclopropane reaction series are given in Table 5, and for the other reaction series in Table 6.

[^3]
Table 3

Data for cyclobutane, cyclopentane, and cyclohexane reaction series.
(6) $\mathrm{p} K_{\mathrm{a}}$ values for trans-2-substituted cyclohexanecarboxylic acids in water at 25°.

(7) Dipole moments of substituted cyclobutanes.

X	H	$\mathrm{CO}_{2} \mathrm{H}$	Br	$\mathrm{CO}_{2} \mathrm{Me}$	Et	CN
$\boldsymbol{\mu}(\mathrm{D})$	$\ldots \ldots \ldots \ldots \ldots$.	0.00	1.60	2.09	1.96	0.05
Ref. $\ldots \ldots \ldots \ldots \ldots \ldots$.	40	41	10	41	$\mathbf{3 6}$	$\mathbf{3 . 4 8}$

(8) Dipole moments of substituted cyclopentanes.

X	H	F	Me	Cl	Br	I	CN	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Et}$
$\boldsymbol{\mu}(\mathrm{D})$	$\ldots \ldots \ldots \ldots$	$0 \cdot 00$	$\mathbf{1 . 8 6}$	0.00	$\mathbf{2 \cdot 0 8}$	$\mathbf{2 \cdot 2 0}$	$\mathbf{2 \cdot 0 6}$	$\mathbf{3 \cdot 7 1}$	$\mathbf{1 . 6 3}$
Ref. $\ldots \ldots \ldots \ldots \ldots$	$\mathbf{3 6}$	$\mathbf{9}$	$\mathbf{3 6}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{4 2}$	$\mathbf{4 2}$

(9) Dipole moments of substituted cyclohexanes.

	X	H	Cl	Br	I	Me	E	Pr^{1}
μ		0	$2 \cdot 3$	$2 \cdot 31$	1.98	0	0	0
Ref.		43	43, 44	10	44	45	45	45
	X	$B u^{t}$	OH	SH	$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CO}_{2} \mathrm{Et}$	CF_{3}	OMe
μ (D)		0	1.82	1.73	$1 \cdot 40$	1.27	$2 \cdot 40$	$1 \cdot 35$
Ref.		45	46	47	42	42	48	49

* Includes statistical factor of $1 / 2$. \dagger At 18°. \ddagger Includes statistical factor of 2 . § At 19°. II Estimated from $\mathrm{p} K_{\mathrm{a}}$ in 80% aqueous Methyl Cellosolve. See Table 2, footnote §.

Table 4.
Substituent constants obtained from sources other than refs. 31 and 50.

Substituent	$\mathrm{CO}_{2} \mathrm{Me}$	CN	Pr	Pr^{1}	$\mathrm{Bu}{ }^{1}$	OPr ${ }^{1}$	CO_{2}	Cyclohexyl	
$\sigma_{\text {m }}$	-	0.615^{51}	-0.05*	-0.07*	-0:07*	-	-	-0.06 §	
$\sigma_{\text {p }}$	$0 \cdot 436{ }^{27}$	-				$-0.286{ }^{21}$	- 15	$-0.15 \mathrm{~T}$	
$\sigma_{\text {I }}$	-	-	$-0.02 \dagger$	$0.03 \dagger$	$-0.05 \dagger$	$0.29 \dagger$	$-0 \cdot 15 \dagger$	-0.05 \|	

* Calculated from $\sigma_{\mathrm{m}}=\left(\sigma_{\mathrm{p}}+2 \sigma_{1}\right) / 3 . \quad \dagger$ Calculated from $\sigma_{\mathrm{I}}=\sigma^{*} / 6 \cdot 23$. \ddagger Calculated from $\sigma_{1}=\left(3 \sigma_{\mathrm{m}}-\sigma_{\mathrm{p}}\right) / 2$. § Assumed equal to $\sigma_{\mathrm{m}}{ }^{+}$for $\operatorname{Pr}^{\mathrm{i}}$, given by ref. 52. II Assumed equal to σ_{p} for Pri. || Assumed equal to σ_{I} for Et.

Ionisation Constants.-The $\mathrm{p} K_{\mathrm{a}}$ values used were in some cases calculated from values in other solvent systems by means of the linear relationship between the values in the two systems. The necessary linear relationships were obtained from data in the literature by least-mean-squares. Statistical factors of $1 / 2$ and 2 were used for the values of $\mathrm{p} K_{\mathrm{a} 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$, respectively, of dicarboxylic acids. The results for the trans-2-substituted cyclopropanecarboxylic acids (Series 1), and to an even greater extent for the trans-2substituted 3,3-dimethylcyclopropanecarboxylic acids (Series 2), show best correlation

[^4]Table 5.
Cyclopropane reaction series.

Series	$\rho_{\text {m }}$	ρ_{p}	ρ_{1}	r *	$s \dagger$	\ddagger	$Q_{\text {H }}$ (calc.)	n §
1	-1.9759			0.975	0.972	$7 \cdot 582$	$4 \cdot 69$	5
		-1.509		0.910	0.181	$3 \cdot 801$	$4 \cdot 63$	
			-2.018	0.931	$0 \cdot 160$	$4 \cdot 415$	$4 \cdot 616$	
2	$-3 \cdot 294$	-1.987		0.964	$0 \cdot 195$	$6 \cdot 259$	$7 \cdot 63$	5
				0.857	$0 \cdot 375$	2.882	$7 \cdot 41$	
			$-2 \cdot 377$	0.733	$0 \cdot 496$	1.866	$7 \cdot 60$	
3	$-5 \cdot 357$	$-6 \cdot 470$		0.939	0.590	$3 \cdot 878$	$4 \cdot 70$	4
				0.991	0.225	10.76	$4 \cdot 93$	
			$-4 \cdot 126$	0.825	0.975	2.062	$4 \cdot 47$	
4	5.914	$5 \cdot 274$		0.964	0.454	8.859	-0.0517	8
				0.985	0.289	14-22	0.32	
			$5 \cdot 576$	0.887	0.787	$4 \cdot 708$	-0.604	
5	-0.0224			0.972	0.00164	$9 \cdot 239$	1.636	7
		-0.0190		0.978	0.00146	10.49	1.636	
			-0.0274	0.947	0.00225	6.586	1.637	

* Correlation coefficient. \dagger Standard deviation. \ddagger " Student" t test for the significance of ρ : $t=\rho / S_{\rho}$. § Number of compounds in the series. TT The - signs on the ρ-values are due to the correlations' having been made directly with $\mathrm{p} K_{a}$ values. For comparison with the ρ-values given in Ref. 21 for ionisation of series of acids or bases, signs should be changed to + .

Table 6.
Cyclobutane, cyclopentane, and cyclohexane reaction series.**

Series	$\rho_{\text {m }}$	ρ_{p}	$\rho_{\text {I }}$	r *	$s \dagger$	$t \ddagger$	$Q_{\text {H }}$ (calc.)	n §
6	$-2 \cdot 322$			0.924	$0 \cdot 272$	$5 \cdot 387$	$5 \cdot 217$	6
		-1.036		0.606	$0 \cdot 565$	$1 \cdot 702$	$4 \cdot 919$	
			-2.442	0.944	$0 \cdot 234$	$6 \cdot 401$	$5 \cdot 28$	
7	$5 \cdot 162$	$4 \cdot 046$		0.985	$0 \cdot 259$	11.52	$0 \cdot 13$	6
				0.927	0.569	4.925	$0 \cdot 44$	
			$5 \cdot 373$	0.981	$0 \cdot 292$	$10 \cdot 18$	$0 \cdot 11$	
8	5.470	$4 \cdot 666$		0.960	$0 \cdot 345$	$9 \cdot 027$	0.0732	9
				0.780	0.767	$3 \cdot 301$	$0 \cdot 80$	
			$4 \cdot 817$	0.931	$0 \cdot 448$	6.735	$0 \cdot 059$	
9	$4 \cdot 390$	$4 \cdot 082$		0.914	0.413	7.779	$0 \cdot 43$	14
				0.878	0.684	6.358	$0 \cdot 44$	
			$4 \cdot 617$	0.972	0.237	14.43	$0 \cdot 25$	
			** For	notes	able 5.			

with the σ_{m} constants. Recently, values for the ionisation constants of trans-2,3-di-phenyl- and trans-2,3-dipropyl-cyclopropanecarboxylic acids (VIIa and VIIb) in 50\% aqueous ethanol have been reported. ${ }^{53}$
The $\mathrm{p} K_{\mathrm{a}}$ values for water were calculated from the ionisation constants of the acids, and have been included in series 1 by using the equation:

$$
\begin{equation*}
Q_{\mathrm{x}}=\rho \sum \sigma_{\mathrm{x}}+Q_{\mathrm{H}}, \tag{la}
\end{equation*}
$$

where $\Sigma \sigma_{x}$ is the sum of the σ constants for groups in the 2 - and 3 -position. Results of the correlation of this extended series are shown in Table 7; they seem to indicate a definitely superior correlation with σ_{m}, as compared to that with σ_{I} or σ_{p}.

The results for the trans-2-substituted-cyclohexanecarboxylic acids (Series 6) show best correlation with the σ_{I} constants. This correlation is improved by dropping the value for

[^5]the unsubstituted acid $(\mathrm{X}=\mathrm{H})$ from the series. This is probably due to the fact that the other acids in the series are largely in the e,e conformation, whereas the unsubstituted acid may exist in the a conformation to a greater extent. It is particularly significant that correlation for series 1 and 2 with the σ_{p} constants, while poor, is very much greater than that of series 6 . This is further evidence for some degree of resonance interaction in series $\mathbf{1}$ and 2. Series $\mathbf{3}$ is best correlated by σ_{p}.

Dipole Moments.-The successful correlation of the dipole moments of substituted benzenes, ${ }^{53}$ acetylenes, ${ }^{29}$ and olefins ${ }^{54}$ suggested the possibility of correlating the dipole moments of cyclopropanes. In these correlations, minus signs were assigned to those groups (except phenyl) whose σ constants are negative. In the case of the phenyl group, the σ_{p} constant has a negative sign, but is not significantly different from zero. The results show that the substituted cyclopropanes (Series 4) are best correlated by the σ_{p} constants. Although the correlation coefficient for correlation with the σ_{m} constants is good, the value of t shows that better correlation is obtained with σ_{p}. The dipole moments of substituted cyclobutanes show about equally good correlation with σ_{m} and σ_{I}. The dipole moments of substituted cyclopentanes show good correlation with σ_{m}, fair correlation with σ_{I}, and poor correlation with σ_{p}. This is surprising, but it should be noted that this series encompasses the smallest range of substituent types (H , alkyl, cyano, halogen, alkoxycarbonyl) of all the series studied. The cyclohexanes give best correlation with σ_{I}.

Table 7.
Cyclopropane reaction series correlated with eqn. 1a.**

Series	$\rho_{\text {m }}$	ρ_{p}	$\rho_{\text {I }}$	$r *$	$s \dagger$	$t \ddagger$	$n \S$
$1 a$	-2.053			0.974	$0 \cdot 0895$	$9 \cdot 526$	7
		- 1.487		0.913	$0 \cdot 260$	$4 \cdot 994$	
			-1.953	0.883	$0 \cdot 184$	$4 \cdot 207$	
\%at	-0.0194			0.936	0.00239	6.492	8
		-0.0189		0.980	0.00135	$12 \cdot 10$	
			-0.0158	0.824	0.00384	$3 \cdot 563$	
$5 b$	-0.0241	-0.0234		0.933	0.00338	6.861	9
				0.944	0.00310	7.568	
			-0.0211	0.840	0.00511	4.091	

Near-infrared Absorption Spectra of Substituted Cyclopropanes.-The correlation coefficients show good correlation with σ_{m} and σ_{p}, and fair correlation with σ_{I}. The standard deviations, however, indicate that best correlation is with the σ_{p} constants.

If the value ($\lambda=1.625$ microns) for 1,1 -dichlorocyclopropane is included in the series, and $\Sigma \sigma$ is used in the correlation, the results indicate far better correlation with σ_{p} (Series $5 a$, Table 7). Further inclusion of the value ($\lambda=1 \cdot 650$ microns) for $1,1,2,2$-tetramethylcyclopropane, and use of $\Sigma \sigma$, gives good correlation with σ_{p} and σ_{m} but poor correlation with σ_{I} (Series $5 b$, Table 7). This change in correlation with σ_{p}, relative to σ_{m}, is not unexpected. In series 5 and $5 a$, substituents are attached only to C-1. Inclusion of 1,1,2,2-tetramethylcyclopropane involves substitution at both C-1 and C-2.

Discussion

Conjugation in Cyclopropane Systems.-Of the trans-2-substituted cyclopropane series studied, series 1 gave the correlation order $\sigma_{m}>\sigma_{1}>\sigma_{p}$, series $1 a$ gave $\sigma_{\mathrm{m}} \gg \sigma_{\mathrm{p}}>\sigma_{\mathrm{I}}$, and series 2 gave $\sigma_{\mathrm{m}} \gg \sigma_{\mathrm{p}} \gg \sigma_{\mathrm{I}}$. This suggests that the resonance contribution, σ_{R}, in these series is approximately equal to $1 / 3$ of that found in a substituent bonded to o - or p-phenylene, cis- or trans-vinylene, or ethynylene groups.

Of the 1 -substituted cyclopropanes series studied, series 3 gave the correlation order

[^6]
1212 Application of the Hammett Equation to Cyclopropanes.

$\sigma_{\mathrm{p}} \gg \sigma_{\mathrm{m}} \gg \sigma_{\mathrm{I}}$, series 4 gave $\sigma_{\mathrm{p}} \gg \sigma_{\mathrm{m}} \gg \sigma_{\mathrm{I}}$, series 5 gave $\sigma_{\mathrm{p}}>\sigma_{\mathrm{m}}>\sigma_{\mathrm{I}}$, and series $5 a$ gave $\sigma_{\mathrm{p}} \gg \sigma_{\mathrm{m}} \gg \sigma_{\mathrm{I}}$. These results indicate a σ_{R} contribution to substituents in these series of about the same magnitude as that found in a substituent attached to o - or p-phenylene, cis- or trans-vinylene, or ethynylene groups.

These results may be rationalised as follows. Both lobes of the p or π orbitals of a substituent in the 2 -position cannot overlap the endo ring orbitals ${ }^{55}$ and the p or π orbitals of the reaction site (Fig. 1). A nodal plane must pass through C-3 and one lobe of the π orbital. In the 1 -position, however, both lobes of the p or π orbitals of the substituent and reaction site are capable of overlap with the endo orbitals of C-1 in the ring. In Fig. 2, the nodal planes through C-2 and C-3 prevent overlap with the endo C-2-C-3 bond. This argument is implicit in Jaffé's discussion of bonding in the cyclopropane ring. ${ }^{2}$

Transmission of Substituent Effects by the Cyclopropane Group.-A comparison of the transmission of substituent effects through various systems may be made by use of eqn. (5):

$$
\begin{equation*}
\gamma=P_{G} / P_{G^{\circ}}, \tag{5}
\end{equation*}
$$

where P_{G} is the reaction constant for the group G being considered and $P_{G^{\circ}}$ is the reaction constant for a standard group G°. Transmission of substituent effects may also be compared by means of the τ-values proposed by Hine. ${ }^{56}$ Values of γ and τ are given in Table 8.

Fig. 1.

Fig. 2.

Figs. 1 and 2. Overlap of orbitals in substituted cyclopropanes.

The τ-values quoted in Table 8 for the m - and p-phenylene groups are those obtained by Hine ${ }^{56}$ from the ionisation of benzoic acids, rather than the average values which he reports. The τ-value for series 1 was calculated from ρ_{m}, and that for series 3 from ρ_{p}.

Table 8.
Transmission of substituent effects.

Group	γ	τ	Group	γ	τ
p-Phenylene	1.00*	$3.05 \dagger$	Ferrocenylene	$0 \cdot 677$	$2 \cdot 4+$
trans-Vinylene	$2 \cdot 23$	$6 \cdot 52+$	trans-Cyclopropylene	1.98	$4 \cdot 43$
m-Phenylene	1.00*	$2 \cdot 66$	Cyclopropylidene ...	5•36	0.53
Ethynylene......	1.89	5•13 \ddagger			

The author acknowledges helpful discussion with Professor L. Z. Pollara, Department of Chemistry, Stevens Institute of Technology.

[^7]
[^0]: ${ }^{1}$ Coulson and Moffitt, J. Chem. Phys., 1947, 15, 151; Phil. Mag., 1949, 40, 1; Sugden, Nature, 1947, 160, 367; Walsh, Nature, 1947, 159, 165; Trans. Faraday Soc., 1949, 45, 179.
 ${ }^{2}$ Jaffé, Z. Elektrochem., 1959, 59, 823.
 3 Klotz, J. Amer. Chem. Soc., 1944, 66, 88.
 ${ }^{4}$ Roberts and Green, J. Amer. Chem. Soc., 1946, 68, 214.
 ${ }^{5}$ Rogers, J. Amer. Chem. Soc., 1947, 69, 2544.
 ${ }^{6}$ Robertson, Music, and Matsen, J. Amer. Chem. Soc., 1950, 72, 5260 ; Aleksanyan, Sterin, Safonova, Lukina, and Kazanskii, Optika i Spektroskopiya, 1959, 7, 178; Perold, J.S. African Chem. Inst., 1953, 6, 22.
 ${ }^{7}$ Mariella, Petersen, and Ferris, J. Amer. Chem. Soc., 1948, 70, 1494.
 ${ }^{8}$ Mohrbacher and Cromwell, J. Amer. Chem. Soc., 1957, 79, 401.
 © Rogers and Roberts, J. Amer. Chem. Soc., 1946, 68, 843.
 10 Roberts and Chambers, J. Amer. Chem. Soc., 1951, 73, 5030.
 ${ }^{11}$ Spinrad, J. Amer. Chem. Soc., 1946, 68, 617.
 12 van Volkenburgh, Greenlee, Derfer, and Boord, J. Amer. Chem. Soc., 1949. 71, 172, 3595.
 ${ }^{13}$ Peterson, Chem. and Ind., 1956, 904.
 ${ }^{14}$ Chesnut and Marsh, Acta Cryst., 1958, 11, 413.
 ${ }^{15}$ Friend and Dailey, J. Chem. Phys., 1958, 29, 577.
 16 Bone and Perkin, J., 1895, 67, 108; Kohler and Conant, J. Amer. Chem. Soc., 1917, 39, 1404; Kierstead, Linstead, and Weedon, J., 1952, 3616.

[^1]: ${ }^{17}$ Eastman, J. Amer. Chem. Soc., 1954, 76, 4115; Eastman and Selaver, ibid., 1954, 76, 4118; Eastman and Freeman, ibid., 1955, 77, 6642; Smith and Eastman, ibid., 1957, 79, 5500.

 18 Kosower and Ito, Proc. Chem. Soc., 1962, 25.
 19 Kierstead, Linstead, and Weedon, J., 1953, 1799; Perold, J.S. African Chem. Inst., 1955, 8, 1 ; Cannon, Santilli, and Shenian, J. Amer. Chem. Soc., 1959, 81, 1660.
 ${ }^{20}$ Hammett, "• Physical Organic Chemistry," McGraw-Hill, New York, 1940.
 ${ }^{21}$ Jaffé, Chem. Rev., 1953, 53, 191.
 ${ }^{22}$ Trachtenberg and Odian, J. Amer. Chem. Soc., 1958, 80, 4018.
 ${ }^{23}$ Fuchs and Bloomfield, J. Amer. Chem. Soc., 1959, 81, 3158.
 ${ }^{24}$ Bloomfield and Fuchs, J. Org. Chem., 1961, 26, 2991.
 ${ }_{25}$ Fuchs, Kaplan, Bloomfield, and Hatch, J. Org. Chem., 1962, 27, 733.

[^2]: ${ }^{26}$ Charton, Abstracts of the 137th Meeting of Amer. Chem. Soc., 1960, p. 62-O; 140th Meeting, 1961, p. 57-T.

 27 Charton and Meislich, J. Amer. Chem. Soc., 1958, 80, 5940.
 ${ }^{28}$ Hine and Bailey, J. Amer. Chem. Soc., 1959, 81, 2075; J. Org. Chem., 1961, 26, 2098; de la Mare, $J ., 1960,3823$.
 ${ }^{29}$ Charton, J. Org. Chem., 1961, 26, 735.
 ${ }^{30}$ Charton, Abstracts of the 140th Meeting of the Amer. Chem. Soc., 1961, p. 91-Q.
 ${ }^{31}$ Taft and Lewis, J. Amer. Chem. Soc., 1958, 80, 2436; Taft, J. Phy's. Chem., 1960, 64, 1805.

[^3]: 32 Šmejkal, Jonáš, and Farkaš, Coll. Czech. Chem. Comm., 1960, 25, 1746.
 ${ }^{33}$ Kortum, Vogel, and Andrussow, " Dissociation Constants of Organic Acids in Aqueous Solution," Butterworths, London, 1961.
 ${ }^{24}$ Bruylants and Stassens, Bull. Classe Sci. Acad. roy. Belg., 1921, 702.
 ${ }^{35}$ Ramaswamy, Proc. Indian Acad. Sci., 1936, A, 4, 108.
 ${ }^{36}$ vanArkel, Meerburg, and vandenHandel, Rec. Trav. chim. 1942, 61, 767.
 ${ }^{37}$ Boeseken and Takes, Rec. Trav. chim., 1937, 58, 858.
 ${ }^{38}$ Gassman, Chem. and Ind., 1962, 740.

[^4]: ${ }^{39}$ Febrer and Pascual, Anales real Soc. españ. Fís. Quim., 1956, 52, 541.
 ${ }^{40}$ Smyth, " Dielectric Constant and Structure," McGraw-Hill, New York, 1955.
 ${ }^{41}$ Nevill, Frank, and Taylor, J. Org. Chem., 1962, 27, 422.
 ${ }^{42}$ Mousseron, Bull. Soc. chim. France, 1947, 605.
 ${ }^{43}$ Williams, J. Amer. Chem. Soc., 1939, 52, 1831.
 44 Hassel and Naeshagen, Z. phys. Chem., 1932, B, 15, 373.
 ${ }^{45}$ Baker and Groves, $J ., 1939,1144$.
 46 Halverstadt and Kumler, J. Amer. Chem. Soc., 1942, 64, 1982.
 47 Mathias, de Carvalho-Filho, and Cecchini, J. Phys. Chem., 1961, 65, 425.
 ${ }^{48}$ Roberts, Webb, and McElhill, J. Amer. Chem. Soc., 1950, 72, 408.
 ${ }^{49}$ Groves and Sugden, J., 1937, 1779.
 ${ }^{50} \mathrm{McDaniel}$ and Brown, J. Org. Chem., 1958, 23, 420.
 ${ }^{31}$ Fickling, Fischer, Mann, Packer, and Vaughan, J. Amer. Chem. Soc., 1959, 81, 4226.
 ${ }^{52}$ Okamoto and Brown, J. Org. Chem., 1957, 22, 485.

[^5]: ${ }^{53}$ D'yaKonov, Komendatov, Fu, and Korichev, J. Gen. Chem. (U.S.S.R.), 1962, 32, 917.

[^6]: ${ }^{54}$ Charton, Abstracts of the 141st Meeting of the Amer. Chem. Soc., 1962, p. 47-R.

[^7]: Stevens Institute of Technology, Hoboken, New Jersey, U.S.A.
 [Present address: Department of Chemistry, Pratt Institute, Brooklyn 5, N.Y., U.S.A.]
 [Received, June 19th, 1963.]
 ${ }^{55}$ Ingraham, " Steric Effects in Organic Chemistry," Wiley, New York, 1956.
 ${ }^{56}$ Hine, J. Amer. Chem. Soc., 1959, 81, 1126.

